Log-concavity of genus distributions of ring-like families of graphs
نویسندگان
چکیده
We calculate genus distribution formulas for several families of ring-like graphs and prove that they are log-concave. The graphs in each of our ring-like families are obtained by applying the self-bar-amalgamation operation to the graphs in a linear family (linear in the sense of Stahl). That is, we join the two root-vertices of each graph in the linear family. Although log-concavity has been proved for many linear families of graphs, the only other ring-like sequence of graphs of rising maximum genus known to have log-concave genus distributions is the recently reinvestigated sequence of Ringel ladders. These new logconcavity results are further experimental evidence in support of the long-standing conjecture that the genus distribution of every graph is log-concave. Further evidence in support of the general conjecture is the proof herein that each partial genus distribution, relative to face-boundary walk incidence on root vertices, of an iterative bar-amalgamations of copies of various given graphs is log-concave, which is an unprecedented result for partitioned genus distributions. Our results are achieved via introduction of the concept of a vectorized production matrix, which seems likely to prove a highly useful operator in the theory of genus distributions and via a new general result on log-concavity.
منابع مشابه
Log-Concavity of Combinations of Sequences and Applications to Genus Distributions
We formulate conditions on a set of log-concave sequences, under which any linear combination of those sequences is log-concave, and further, of conditions under which linear combinations of log-concave sequences that have been transformed by convolution are log-concave. These conditions involve relations on sequences called synchronicity and ratio-dominance, and a characterization of some biva...
متن کاملCombinatorial conjectures that imply local log-concavity of graph genus polynomials
The 25-year old LCGD Conjecture is that the genus distribution of every graph is log-concave. We present herein a new topological conjecture, called the Local Log-Concavity Conjecture. We also present a purely combinatorial conjecture, which we prove to be equivalent to the Local Log-Concavity Conjecture. We use the equivalence to prove the Local Log-Concavity Conjecture for graphs of maximum d...
متن کاملIterated Claws Have Real-rooted Genus Polynomials
We prove that the genus polynomials of the graphs called iterated claws are real-rooted. This continues our work directed toward the 25-year-old conjecture that the genus distribution of every graph is log-concave. We have previously established log-concavity for sequences of graphs constructed by iterative vertexamalgamation or iterative edge-amalgamation of graphs that satisfy a commonly obse...
متن کاملThe sum-annihilating essential ideal graph of a commutative ring
Let $R$ be a commutative ring with identity. An ideal $I$ of a ring $R$is called an annihilating ideal if there exists $rin Rsetminus {0}$ such that $Ir=(0)$ and an ideal $I$ of$R$ is called an essential ideal if $I$ has non-zero intersectionwith every other non-zero ideal of $R$. Thesum-annihilating essential ideal graph of $R$, denoted by $mathcal{AE}_R$, isa graph whose vertex set is the set...
متن کاملSome Properties of the Nil-Graphs of Ideals of Commutative Rings
Let R be a commutative ring with identity and Nil(R) be the set of nilpotent elements of R. The nil-graph of ideals of R is defined as the graph AG_N(R) whose vertex set is {I:(0)and there exists a non-trivial ideal such that and two distinct vertices and are adjacent if and only if . Here, we study conditions under which is complete or bipartite. Also, the independence number of is deter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 42 شماره
صفحات -
تاریخ انتشار 2014